Case Report (Bench Press)

Design

Perform 8 sets (only last 6 recorded) of 4 reps at 80% of my 1rm. Perform each rep with maximal effort. Record velocity of each set.

Analysis:

Calculate the rate of velocity drop-off in each set (as determined by the slope of the 4 reps). Record the Min and Max velocity of each rep in the given set. Report the raw velocities of each rep and each set.

Data

Graph 1 is the raw data of each rep’s velocity in each set. There is an obvious drop off in velocity between reps.

GRAPH 1

 

Graph 2 is a lot more interesting than Graph 1. What we have here is the slope of velocity drop-off between reps in each set (blue line and left vertical axis). There is also Max velocity and Min velocity (orange line and right vertical axis).

GRAPH 2

Continue reading “Case Report (Bench Press)”

6 great exercises you’re probably not doing

Coach: Bill Miller

I’m a washed up meat head ex-baseball player who loves to train. As lame as this sounds, one of the few advantages is that I get to experiment with my training on a very consistent basis without fear of failure. Sometimes these exercise experiments turn out awesome. Try these if you’re looking for something new to add to your training arsenal!

 

AntiRotational Sled Shuffles/Walks

This exercise is a real ass-kicker that will definitely expose your weaknesses. If you lack core stability, hip strength, knee or shoulder stability, the sled won’t budge a whole lot. All these areas are extremely important for an athlete’s health and performance.

Tips

  • Take out all the slack in the tether before beginning the exercise. Start in a perfect position and don’t “yank” the sled.
  • Take your time. I’m often all for shuffling/lateral running with the sled as fast as possible, but this exercise is meant to be slow and controlled! Add weight if necessary to make it more difficult.
  • Keep a neutral spine. The initial response to get the sled to move is by leaning to the side with the torso. Don’t do that. Keep a perfect posture and engage the hips to allow the shuffle motion to move the sled.
  • Use it for conditioning when needed! This exercise is relatively low taxing on the spine. It’s also, as stated before, a real ass-kicker! It’s fairly simple to perform as well. For those reasons, I think it can fit into a conditioning circuit well.

Continue reading “6 great exercises you’re probably not doing”

Potential Versus Expression

 

Force potential is the maximal amount of force one could possibly express if all contractile properties were to act in an optimal fashion. It is dependent on the raw physiological properties of the body. Force expression is the amount of force one actually expresses in a movement. Force expression is much more complex. It involves the dynamic nature of skill (neuromuscular timing), which is what ultimately the limiting variable in force expression. Think about jumping to dunk versus performing a single arm, maximal arm flexion against an isokinetic device. Both movements require maximal force expression (in context) to get the best results, but the complexity of the jump compared to the single arm flexion is exponentially greater.

Continue reading “Potential Versus Expression”

Basic Concepts

Strength training, in the grande scheme of this world, is relatively new. Math has been around for centuries yet organized weight training has arguably been around for only decades. Yet, the roots of weight training do not find themselves in embedded in a unique soil. Instead, weight training’s seed is buried in the grounds of many different sciences. Thus, despite weight training being a relatively “new” concept, its foundations have had many years of refinement, dating back to Sir Isaac Newton himself.

Research can thank the Russian’s for their obsessive drive to show world dominance through physical feats (i.e olympics). This obsession expedited the scientific understanding  of human adaptation to physical stressors (weight training). Thus, sprouting from behind the iron curtain were many of the basic concepts that create the foundation of any strength and conditioning program. Russian’s clearly understood that strength mattered and not only strength, but the context of strength. By melding physiology and physics, the newtonian output of performance and the biological process of obtaining said outputs were formed. Thus, one could argue physics, physiology and sprinkle of psychology could just about answer any sporting action.

By understanding some of the basic scientific roots from which strength training has grown from, we as consumers and learners can avoid dangerous pitfalls. Instead of chasing shiny objects hanging from the top branches, we can use our basic understandings to discern whether or not such a leap of faith is worthwhile. This is not to say that new discoveries cannot be made. However, there is a reason why we didn’t go from horse and buddy to Tesla sports cars. Discovery is progressive in nature and doesn’t seem to take such wild quantum leaps like we may think.

https://strongbyscience.net/product/power-house-squat-cycle/

 

https://strongbyscience.net/product/strength-3-week-base-strength-block/

The Not So Confusing Guide To Sports Science

At times, the term “sports science” feels so nebulous, that regardless of what organized attempts you make to integrate sports science, you will always fall short in capturing the whole picture. As a matter of fact, that is 100% correct. Regardless of what you do, what you think you do, or what you want to do, you will never be able to fully understand a single individual, let alone every individual you work with… Sounds like an uphill battle, right?

 

Well, the good thing about sports science is that it is a failure driven process. Anyone who tells you otherwise is lying through their teeth. Unlike what might be the initial hopes and dreams of someone looking to get into or take on sports science, it will never be a utopia-like, rainbow filled process that will elucidate all of your problems. However, the exciting aspect of sports science is that right there! We don’t know, which means what we are currently doing without the use of sports science is also unknown. So, instead of not asking questions and thinking we are right, we might as well start looking for answers and accept the bumps along the way.

Continue reading “The Not So Confusing Guide To Sports Science”

Free Radicals

Loading

I am going to preface this post by saying “I am not a Nutritionist”. The following content provided is to be considered thought provoking and not a definitive guide to management of free radicals.

What are free radicals?

 

Free radicals are developed in your body through many different means and reactions. To avoid diving too far in to the molecular biology, lets keep it short. Free radicals are bad. They are highly unstable, reactive oxygen molecules that are present in your body. Due to their instability, they are always looking for stability, which means they are looking to bind to other molecules and cause havoc.

http://primoh2.com/wp-content/uploads/2017/07/fr-1.png Continue reading “Free Radicals”

General Adaptation and Specific Adaptation

Loading

The process of the “general adaptive response” is conceptually a very simple process. Without going into great molecular detail, the following stress response occurs in the body

  1. Recognizes a stressor
  2. Hormones are released
  3. Mobilizes energies to deal with the stressor
  4. Structures may be destroyed while dealing with the stressor (myosin heads during a muscular contraction)
  5. Magnitude and duration of the stressor determines the amount of destruction and mobilization of energy
  6. Once stressor is removed or defeated (like a cold), the body can begin the repair process
  7. Energies that were used and structures were broken are rebuilt in a stronger fashion to allow the body to deal with future stressors of the same nature

Continue reading “General Adaptation and Specific Adaptation”

The Passive Spring

Storing and utilizing elastic energy is not only an intrinsic neuromuscular quality, but a skill. It requires the proper tensioning and timing of strong structural and contractile properties, which in turn allows them to store and realize the kinetic forces acting upon the body during the amortization phase of the jump. In other words, proper skill and strength allows you to act more like a bouncy ball when you hit the ground and less like a sack of potatoes.

Image 1

Continue reading “The Passive Spring”

Programming Application to Match Desired Adaptations

AUTHOR: MATT VAN DYKE 

Author’s Main Website: http://www.vandykestrength.com/

Every coach in the sports performance realm has likely heard the phrase “There are a million ways to skin a cat” in regards to implemented training. In all honesty this is not far from the truth. Depending on the athlete’s training age, almost any coach can get an athlete “strong”. It takes one with a deeper understanding of what is occurring within the athlete’s organism in order for performance to be increased to the greatest extent. The aim of this post is to force coaches to consider and implement training “concepts” or “primary goals”, rather than just a set, rep, or loading scheme.

 

As the internship coordinator, I have had the ability to ask countless applicants their processes of improving various aspects of performance through training, such as strength. Depending upon how well read the applicant may be, common answers range from set and rep schemes, weekly training set up, to even methodologies (triphasic, tier, 1×20, etc.). Based on the terminology of the question, all of these responses would be correct. As long as the loading scheme includes progressive overload and stresses the athlete being trained, any methodology has the potential to improve strength. However, when the applicant is asked to further explain their rationale behind implementing a methodology, more times than not their answers are unclear and spoken without much confidence. Please understand I am in no way knocking any applicant or intern that has gone through our application process, but this consistent finding exemplifies one of the bigger problems in our field. Too many coaches can spit out a set and rep scheme, use an intensity chart, or quote a system, while failing to understand the changes or adaptations being induced by the described training methodology. As coaches continue to develop a greater understanding of the human body, the more in-depth their training systems can become.

Continue reading “Programming Application to Match Desired Adaptations”