Are You Ready to Train?

 

Being Fit is Never Bad

Research by Tim Gabbett has highlighted the significant correlation between acute workloads and chronic workloads in regards to injury rates in Australian football. Essentially, spikes in acute workloads (in relation to chronic loads) the athlete has experienced over the past will lead to greater injury.

However, exposing athletes to higher workloads makes them more injury resistant in season. Thus, an interesting conflict arises between understanding what is too much or too little (too little of work is significantly related to injury).

Continue reading “Are You Ready to Train?”

Case Report (Bench Press)

Design

Perform 8 sets (only last 6 recorded) of 4 reps at 80% of my 1rm. Perform each rep with maximal effort. Record velocity of each set.

Analysis:

Calculate the rate of velocity drop-off in each set (as determined by the slope of the 4 reps). Record the Min and Max velocity of each rep in the given set. Report the raw velocities of each rep and each set.

Data

Graph 1 is the raw data of each rep’s velocity in each set. There is an obvious drop off in velocity between reps.

GRAPH 1

 

Graph 2 is a lot more interesting than Graph 1. What we have here is the slope of velocity drop-off between reps in each set (blue line and left vertical axis). There is also Max velocity and Min velocity (orange line and right vertical axis).

GRAPH 2

Continue reading “Case Report (Bench Press)”

Basic Concepts

Strength training, in the grande scheme of this world, is relatively new. Math has been around for centuries yet organized weight training has arguably been around for only decades. Yet, the roots of weight training do not find themselves in embedded in a unique soil. Instead, weight training’s seed is buried in the grounds of many different sciences. Thus, despite weight training being a relatively “new” concept, its foundations have had many years of refinement, dating back to Sir Isaac Newton himself.

Research can thank the Russian’s for their obsessive drive to show world dominance through physical feats (i.e olympics). This obsession expedited the scientific understanding  of human adaptation to physical stressors (weight training). Thus, sprouting from behind the iron curtain were many of the basic concepts that create the foundation of any strength and conditioning program. Russian’s clearly understood that strength mattered and not only strength, but the context of strength. By melding physiology and physics, the newtonian output of performance and the biological process of obtaining said outputs were formed. Thus, one could argue physics, physiology and sprinkle of psychology could just about answer any sporting action.

By understanding some of the basic scientific roots from which strength training has grown from, we as consumers and learners can avoid dangerous pitfalls. Instead of chasing shiny objects hanging from the top branches, we can use our basic understandings to discern whether or not such a leap of faith is worthwhile. This is not to say that new discoveries cannot be made. However, there is a reason why we didn’t go from horse and buddy to Tesla sports cars. Discovery is progressive in nature and doesn’t seem to take such wild quantum leaps like we may think.

https://strongbyscience.net/product/power-house-squat-cycle/

 

https://strongbyscience.net/product/strength-3-week-base-strength-block/

The Not So Confusing Guide To Sports Science

At times, the term “sports science” feels so nebulous, that regardless of what organized attempts you make to integrate sports science, you will always fall short in capturing the whole picture. As a matter of fact, that is 100% correct. Regardless of what you do, what you think you do, or what you want to do, you will never be able to fully understand a single individual, let alone every individual you work with… Sounds like an uphill battle, right?

 

Well, the good thing about sports science is that it is a failure driven process. Anyone who tells you otherwise is lying through their teeth. Unlike what might be the initial hopes and dreams of someone looking to get into or take on sports science, it will never be a utopia-like, rainbow filled process that will elucidate all of your problems. However, the exciting aspect of sports science is that right there! We don’t know, which means what we are currently doing without the use of sports science is also unknown. So, instead of not asking questions and thinking we are right, we might as well start looking for answers and accept the bumps along the way.

Continue reading “The Not So Confusing Guide To Sports Science”

Fatigue (Central vs Peripheral)

Thanks to my current job, I have been lucky enough to mess around with a bunch of cool, sports science training tools. One of the recent devices I have been playing with is called a Moxy Monitor. In short, it allows me to see the local metabolic demands of the muscle via anaylsis of muscle oxygen saturation levels “SmO2%” (amount of oxygen my muscles are using) and the changes in local blood flow.

Without diving too far into the science, the SmO2% can tell you how much oxygen is being released from the blood stream (capillary level) to the local tissue. The rate at which SmO2% is reduced (desaturated) and the rate at which it returns (resaturates) to baseline during exercise can provide some interesting insights.

As some may know, I am a velocity nerd. I think it is one of the most unique measuring tools available. So naturally, I wanted to use the Moxy Monitor in conjunction with a Tendo Unit to get an understand of how fatigue was manifesting itself during a velocity drop off squat session.

Image 1 Continue reading “Fatigue (Central vs Peripheral)”

Free Radicals

Loading

I am going to preface this post by saying “I am not a Nutritionist”. The following content provided is to be considered thought provoking and not a definitive guide to management of free radicals.

What are free radicals?

 

Free radicals are developed in your body through many different means and reactions. To avoid diving too far in to the molecular biology, lets keep it short. Free radicals are bad. They are highly unstable, reactive oxygen molecules that are present in your body. Due to their instability, they are always looking for stability, which means they are looking to bind to other molecules and cause havoc.

http://primoh2.com/wp-content/uploads/2017/07/fr-1.png Continue reading “Free Radicals”

General Adaptation and Specific Adaptation

Loading

The process of the “general adaptive response” is conceptually a very simple process. Without going into great molecular detail, the following stress response occurs in the body

  1. Recognizes a stressor
  2. Hormones are released
  3. Mobilizes energies to deal with the stressor
  4. Structures may be destroyed while dealing with the stressor (myosin heads during a muscular contraction)
  5. Magnitude and duration of the stressor determines the amount of destruction and mobilization of energy
  6. Once stressor is removed or defeated (like a cold), the body can begin the repair process
  7. Energies that were used and structures were broken are rebuilt in a stronger fashion to allow the body to deal with future stressors of the same nature

Continue reading “General Adaptation and Specific Adaptation”

Internal versus External Loading

It is common for coaches to calculate external load to guide the training process. It is an easy to use tool that helps one get a better understanding of the total physical work being imposed on the athlete. To calculate external load, a coach may use one of many different metrics (tonnage, raw volume, relative volume, acute to chronic etc…).

 

At the end of the day, the goal of using external load is to help coaches better understand the internal loading/adaptive process. Ultimately, all we care about as coaches are the internal adaptations that occur. The accumulation and systematic application of the cellular stress-adaptation process is what eventually manifests itself in the form of improved athletic form. In other words, what happens inside of our body determines how we move in the external environment.

“accumulated cellular adaptations lead to systemic change”

Continue reading “Internal versus External Loading”

Explosive Strength Development

Figure 1: (Left Graph) relationship between load and percentage of 1rm. (Right Graph) An example of a force-time curve depicting how different elementary qualities are expressed with different external loads. Graphs are modified from “supertraining”

 

Explosive strength is not an independent quality, meaning there is no specific exercise that directly trains all of the components involved in its production. Instead, it is comprised up of four “elementary qualities” (listed below and in figure 1). These elementary qualities are independent of each other and must be developed through separate means. Together, they form the expression of explosive strength.

 

  1. Maximal Velocity (Vo)
  2. Starting Strength (early stage rate of force development) (SS)
  3. Acceleration Strength (late stage rate of force development) (AS)
  4. Maximal Strength (So)

Continue reading “Explosive Strength Development”